Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.758
1.
J Neuroeng Rehabil ; 21(1): 78, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745322

BACKGROUND: Mirror therapy (MT) has been shown to be effective for motor recovery of the upper limb after a stroke. The cerebral mechanisms of mirror therapy involve the precuneus, premotor cortex and primary motor cortex. Activation of the precuneus could be a marker of this effectiveness. MT has some limitations and video therapy (VT) tools are being developed to optimise MT. While the clinical superiority of these new tools remains to be demonstrated, comparing the cerebral mechanisms of these different modalities will provide a better understanding of the related neuroplasticity mechanisms. METHODS: Thirty-three right-handed healthy individuals were included in this study. Participants were equipped with a near-infrared spectroscopy headset covering the precuneus, the premotor cortex and the primary motor cortex of each hemisphere. Each participant performed 3 tasks: a MT task (right hand movement and left visual feedback), a VT task (left visual feedback only) and a control task (right hand movement only). Perception of illusion was rated for MT and VT by asking participants to rate the intensity using a visual analogue scale. The aim of this study was to compare brain activation during MT and VT. We also evaluated the correlation between the precuneus activation and the illusion quality of the visual mirrored feedback. RESULTS: We found a greater activation of the precuneus contralateral to the visual feedback during VT than during MT. We also showed that activation of primary motor cortex and premotor cortex contralateral to visual feedback was more extensive in VT than in MT. Illusion perception was not correlated with precuneus activation. CONCLUSION: VT led to greater activation of a parieto-frontal network than MT. This could result from a greater focus on visual feedback and a reduction in interhemispheric inhibition in VT because of the absence of an associated motor task. These results suggest that VT could promote neuroplasticity mechanisms in people with brain lesions more efficiently than MT. CLINICAL TRIAL REGISTRATION: NCT04738851.


Feedback, Sensory , Motor Cortex , Spectroscopy, Near-Infrared , Humans , Male , Female , Spectroscopy, Near-Infrared/methods , Adult , Feedback, Sensory/physiology , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Young Adult , Brain/physiology , Brain/diagnostic imaging , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Psychomotor Performance/physiology
2.
Nat Commun ; 15(1): 4084, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744847

Animals can quickly adapt learned movements to external perturbations, and their existing motor repertoire likely influences their ease of adaptation. Long-term learning causes lasting changes in neural connectivity, which shapes the activity patterns that can be produced during adaptation. Here, we examined how a neural population's existing activity patterns, acquired through de novo learning, affect subsequent adaptation by modeling motor cortical neural population dynamics with recurrent neural networks. We trained networks on different motor repertoires comprising varying numbers of movements, which they acquired following various learning experiences. Networks with multiple movements had more constrained and robust dynamics, which were associated with more defined neural 'structure'-organization in the available population activity patterns. This structure facilitated adaptation, but only when the changes imposed by the perturbation were congruent with the organization of the inputs and the structure in neural activity acquired during de novo learning. These results highlight trade-offs in skill acquisition and demonstrate how different learning experiences can shape the geometrical properties of neural population activity and subsequent adaptation.


Adaptation, Physiological , Learning , Models, Neurological , Motor Cortex , Learning/physiology , Adaptation, Physiological/physiology , Motor Cortex/physiology , Animals , Neural Networks, Computer , Neurons/physiology , Movement/physiology , Nerve Net/physiology
3.
Sci Rep ; 14(1): 10907, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740808

In this study, we investigated the electrical brain responses in a high-density EEG array (64 electrodes) elicited specifically by the word memory cue in the Think/No-Think paradigm in 46 participants. In a first step, we corroborated previous findings demonstrating sustained and reduced brain electrical frontal and parietal late potentials elicited by memory cues following the No-Think (NT) instructions as compared to the Think (T) instructions. The topographical analysis revealed that such reduction was significant 1000 ms after memory cue onset and that it was long-lasting for 1000 ms. In a second step, we estimated the underlying brain generators with a distributed method (swLORETA) which does not preconceive any localization in the gray matter. This method revealed that the cognitive process related to the inhibition of memory retrieval involved classical motoric cerebral structures with the left primary motor cortex (M1, BA4), thalamus, and premotor cortex (BA6). Also, the right frontal-polar cortex was involved in the T condition which we interpreted as an indication of its role in the maintaining of a cognitive set during remembering, by the selection of one cognitive mode of processing, Think, over the other, No-Think, across extended periods of time, as it might be necessary for the successful execution of the Think/No-Think task.


Electroencephalography , Memory , Motor Cortex , Humans , Male , Female , Adult , Memory/physiology , Motor Cortex/physiology , Young Adult , Brain Mapping , Thinking/physiology , Brain/physiology , Evoked Potentials/physiology
4.
Elife ; 132024 May 03.
Article En | MEDLINE | ID: mdl-38700136

Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck-/-) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck-/- mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck-/- mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.


Cholecystokinin , Learning , Mice, Knockout , Motor Cortex , Motor Skills , Neuronal Plasticity , Animals , Motor Cortex/physiology , Motor Cortex/metabolism , Motor Cortex/drug effects , Cholecystokinin/metabolism , Cholecystokinin/pharmacology , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Mice , Motor Skills/physiology , Learning/physiology , Male
5.
PeerJ ; 12: e17288, 2024.
Article En | MEDLINE | ID: mdl-38699193

Background: The aim of this study is to investigate the acute effects of anodal transcranial direct current stimulation (tDCS) on reaction time, response inhibition and attention in fencers. Methods: Sixteen professional female fencers were recruited, and subjected to anodal tDCS and sham stimulation in the primary motor area (M1) one week apart in a randomized, crossover, single-blind design. A two-factor analysis of variance with repeated measures was used to analyze the effects of stimulation conditions (anodal stimulation, sham stimulation) and time (pre-stimulation, post-stimulation) on reaction time, response inhibition, and attention in fencers. Results: The study found a significant improvement in response inhibition and attention allocation from pre-stimulation to post-stimulation following anodal tDCS but not after sham stimulation. There was no statistically significant improvement in reaction time and selective attention. Conclusions: A single session of anodal tDCS could improve response inhibition, attention allocation in female fencers. This shows that tDCS has potential to improve aspects of an athlete's cognitive performance, although we do not know if such improvements would transfer to improved performance in competition. However, more studies involving all genders, large samples, and different sports groups are needed in the future to further validate the effect of tDCS in improving the cognitive performance of athletes.


Attention , Cross-Over Studies , Reaction Time , Transcranial Direct Current Stimulation , Humans , Female , Transcranial Direct Current Stimulation/methods , Attention/physiology , Single-Blind Method , Reaction Time/physiology , Young Adult , Adult , Motor Cortex/physiology , Inhibition, Psychological
6.
Curr Biol ; 34(9): 1831-1843.e7, 2024 May 06.
Article En | MEDLINE | ID: mdl-38604168

The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.


Corpus Striatum , Learning , Motor Cortex , Motor Skills , Rats, Long-Evans , Animals , Motor Cortex/physiology , Learning/physiology , Rats , Corpus Striatum/physiology , Male , Motor Skills/physiology
7.
Cell Rep ; 43(4): 113986, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38598336

Layer 5 neurons of the neocortex receive their principal inputs from layer 2/3 neurons. We seek to identify the nature and extent of the plasticity of these projections with motor learning. Using optogenetic and viral intersectional tools to selectively stimulate distinct neuronal subsets in rat primary motor cortex, we simultaneously record from pairs of corticospinal neurons associated with distinct features of motor output control: distal forelimb vs. proximal forelimb. Activation of Channelrhodopsin2-expressing layer 2/3 afferents onto layer 5 in untrained animals produces greater monosynaptic excitation of neurons controlling the proximal forelimb. Following skilled grasp training, layer 2/3 inputs onto corticospinal neurons controlling the distal forelimb associated with skilled grasping become significantly stronger. Moreover, peak excitatory response amplitude nearly doubles while latency shortens, and excitatory-to-inhibitory latencies become significantly prolonged. These findings demonstrate distinct, highly segregated, and cell-specific plasticity of layer 2/3 projections during skilled grasp motor learning.


Forelimb , Motor Cortex , Neuronal Plasticity , Animals , Forelimb/physiology , Neuronal Plasticity/physiology , Motor Cortex/physiology , Motor Cortex/cytology , Rats , Learning/physiology , Hand Strength/physiology , Neurons/physiology , Male , Pyramidal Tracts/physiology , Motor Skills/physiology , Female , Optogenetics , Rats, Long-Evans
8.
Sci Rep ; 14(1): 8475, 2024 04 11.
Article En | MEDLINE | ID: mdl-38605084

Prolonged local vibration (LV) can induce neurophysiological adaptations thought to be related to long-term potentiation or depression. Yet, how changes in intracortical excitability may be involved remains to be further investigated as previous studies reported equivocal results. We therefore investigated the effects of 30 min of LV applied to the right flexor carpi radialis muscle (FCR) on both short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). SICI and ICF were measured through transcranial magnetic stimulation before and immediately after 30 min of FCR LV (vibration condition) or 30 min of rest (control condition). Measurements were performed during a low-intensity contraction (n = 17) or at rest (n = 7). No significant SICI nor ICF modulations were observed, whether measured during isometric contractions or at rest (p = 0.2). Yet, we observed an increase in inter-individual variability for post measurements after LV. In conclusion, while intracortical excitability was not significantly modulated after LV, increased inter-variability observed after LV may suggest the possibility of divergent responses to prolonged LV exposure.


Motor Cortex , Vibration , Electromyography/methods , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation/methods , Neural Inhibition/physiology
9.
eNeuro ; 11(5)2024 May.
Article En | MEDLINE | ID: mdl-38641414

Sleep spindles appear to play an important role in learning new motor skills. Motor skill learning engages several brain regions with two important areas being the motor cortex (M1) and the cerebellum (CB). However, the neurophysiological processes in these areas during sleep, especially how spindle oscillations affect local and cross-region spiking, are not fully understood. We recorded an activity from the M1 and cerebellar cortex in eight rats during spontaneous activity to investigate how sleep spindles in these regions are related to local spiking as well as cross-region spiking. We found that M1 firing was significantly changed during both M1 and CB spindles, and this spiking occurred at a preferred phase of the spindle. On average, M1 and CB neurons showed most spiking at the M1 or CB spindle peaks. These neurons also developed a preferential phase locking to local or cross-area spindles with the greatest phase-locking value at spindle peaks; however, this preferential phase locking was not significant for cerebellar neurons when compared with CB spindles. Additionally, we found that the percentage of task-modulated cells in the M1 and CB that fired with nonuniform spike phase distribution during M1/CB spindle peaks were greater in the rats that learned a reach-to-grasp motor task robustly. Finally, we found that spindle band LFP coherence (for M1 and CB LFPs) showed a positive correlation with success rate in the motor task. These findings support the idea that sleep spindles in both the M1 and CB recruit neurons that participate in the awake task to support motor memory consolidation.


Action Potentials , Motor Cortex , Neurons , Sleep , Animals , Motor Cortex/physiology , Male , Neurons/physiology , Sleep/physiology , Rats , Action Potentials/physiology , Cerebellum/physiology , Learning/physiology , Motor Skills/physiology , Rats, Sprague-Dawley , Rats, Long-Evans , Cerebellar Cortex/physiology
10.
Prog Neurobiol ; 236: 102613, 2024 May.
Article En | MEDLINE | ID: mdl-38631480

While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a 'break.' Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.


Conflict, Psychological , Deep Brain Stimulation , Motor Cortex , Parkinson Disease , Prefrontal Cortex , Subthalamic Nucleus , Theta Rhythm , Humans , Theta Rhythm/physiology , Subthalamic Nucleus/physiology , Male , Female , Middle Aged , Adult , Prefrontal Cortex/physiology , Motor Cortex/physiology , Parkinson Disease/physiopathology , Aged , Neural Pathways/physiology , Dystonia/physiopathology
11.
Sci Rep ; 14(1): 9045, 2024 04 20.
Article En | MEDLINE | ID: mdl-38641629

Transcranial magnetic stimulation paired with electroencephalography (TMS-EEG) can measure local excitability and functional connectivity. To address trial-to-trial variability, responses to multiple TMS pulses are recorded to obtain an average TMS evoked potential (TEP). Balancing adequate data acquisition to establish stable TEPs with feasible experimental duration is critical when applying TMS-EEG to clinical populations. Here we aim to investigate the minimum number of pulses (MNP) required to achieve stable TEPs in children with epilepsy. Eighteen children with Self-Limited Epilepsy with Centrotemporal Spikes, a common epilepsy arising from the motor cortices, underwent multiple 100-pulse blocks of TMS to both motor cortices over two days. TMS was applied at 120% of resting motor threshold (rMT) up to a maximum of 100% maximum stimulator output. The average of all 100 pulses was used as a "gold-standard" TEP to which we compared "candidate" TEPs obtained by averaging subsets of pulses. We defined TEP stability as the MNP needed to achieve a concordance correlation coefficient of 80% between the candidate and "gold-standard" TEP. We additionally assessed whether experimental or clinical factors affected TEP stability. Results show that stable TEPs can be derived from fewer than 100 pulses, a number typically used for designing TMS-EEG experiments. The early segment (15-80 ms) of the TEP was less stable than the later segment (80-350 ms). Global mean field amplitude derived from all channels was less stable than local TEP derived from channels overlying the stimulated site. TEP stability did not differ depending on stimulated hemisphere, block order, or antiseizure medication use, but was greater in older children. Stimulation administered with an intensity above the rMT yielded more stable local TEPs. Studies of TMS-EEG in pediatrics have been limited by the complexity of experimental set-up and time course. This study serves as a critical starting point, demonstrating the feasibility of designing efficient TMS-EEG studies that use a relatively small number of pulses to study pediatric epilepsy and potentially other pediatric groups.


Epilepsy , Motor Cortex , Humans , Child , Transcranial Magnetic Stimulation/methods , Evoked Potentials , Electroencephalography/methods , Motor Cortex/physiology , Evoked Potentials, Motor/physiology
12.
Neuroimage ; 292: 120612, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38648868

Transcranial alternating current stimulation (tACS) is an efficient neuromodulation technique that enhances cognitive function in a non-invasive manner. Using functional magnetic resonance imaging, we investigated whether tACS with different phase lags (0° and 180°) between the dorsal anterior cingulate and left dorsolateral prefrontal cortices modulated inhibitory control performance during the Stroop task. We found out-of-phase tACS mediated improvements in task performance, which was neurodynamically reflected as putamen, dorsolateral prefrontal, and primary motor cortical activation as well as prefrontal-based top-down functional connectivity. Our observations uncover the neurophysiological bases of tACS-phase-dependent neuromodulation and provide a feasible non-invasive approach to effectively modulate inhibitory control.


Inhibition, Psychological , Magnetic Resonance Imaging , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Male , Female , Adult , Young Adult , Stroop Test , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Dorsolateral Prefrontal Cortex/physiology , Dorsolateral Prefrontal Cortex/diagnostic imaging , Executive Function/physiology , Brain Mapping/methods , Motor Cortex/physiology , Motor Cortex/diagnostic imaging
13.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38652551

Acupuncture, a traditional Chinese therapy, is gaining attention for its impact on the brain. While existing electroencephalogram and functional magnetic resonance image research has made significant contributions, this paper utilizes stereo-electroencephalography data for a comprehensive exploration of neurophysiological effects. Employing a multi-scale approach, channel-level analysis reveals notable $\delta $-band activity changes during acupuncture. At the brain region level, acupuncture modulated connectivity between the paracentral lobule and the precentral gyrus. Whole-brain analysis indicates acupuncture's influence on network organization, and enhancing $E_{glob}$ and increased interaction between the motor and sensory cortex. Brain functional reorganization is an important basis for functional recovery or compensation after central nervous system injury. The use of acupuncture to stimulate peripheral nerve trunks, muscle motor points, acupoints, etc., in clinical practice may contribute to the reorganization of brain function. This multi-scale perspective provides diverse insights into acupuncture's effects. Remarkably, this paper pioneers the introduction of stereo-electroencephalography data, advancing our understanding of acupuncture's mechanisms and potential therapeutic benefits in clinical settings.


Acupuncture Therapy , Electroencephalography , Motor Cortex , Humans , Acupuncture Therapy/methods , Electroencephalography/methods , Motor Cortex/physiology , Male , Adult , Female , Somatosensory Cortex/physiology , Young Adult , Sensorimotor Cortex/physiology , Brain Mapping/methods
14.
Nat Commun ; 15(1): 3153, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605030

Although the motor cortex has been found to be modulated by sensory or cognitive sequences, the linkage between multiple movement elements and sequence-related responses is not yet understood. Here, we recorded neuronal activity from the motor cortex with implanted micro-electrode arrays and single electrodes while monkeys performed a double-reach task that was instructed by simultaneously presented memorized cues. We found that there existed a substantial multiplicative component jointly tuned to impending and subsequent reaches during preparation, then the coding mechanism transferred to an additive manner during execution. This multiplicative joint coding, which also spontaneously emerged in recurrent neural networks trained for double reach, enriches neural patterns for sequential movement, and might explain the linear readout of elemental movements.


Macaca , Motor Cortex , Animals , Motor Cortex/physiology , Neurons/physiology , Movement/physiology , Cues , Psychomotor Performance/physiology
15.
eNeuro ; 11(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38565296

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique capable of inducing neuroplasticity as measured by changes in peripheral muscle electromyography (EMG) or electroencephalography (EEG) from pre-to-post stimulation. However, temporal courses of neuromodulation during ongoing rTMS are unclear. Monitoring cortical dynamics via TMS-evoked responses using EMG (motor-evoked potentials; MEPs) and EEG (transcranial-evoked potentials; TEPs) during rTMS might provide further essential insights into its mode of action - temporal course of potential modulations. The objective of this study was to first evaluate the validity of online rTMS-EEG and rTMS-EMG analyses, and second to scrutinize the temporal changes of TEPs and MEPs during rTMS. As rTMS is subject to high inter-individual effect variability, we aimed for single-subject analyses of EEG changes during rTMS. Ten healthy human participants were stimulated with 1,000 pulses of 1 Hz rTMS over the motor cortex, while EEG and EMG were recorded continuously. Validity of MEPs and TEPs measured during rTMS was assessed in sensor and source space. Electrophysiological changes during rTMS were evaluated with model fitting approaches on a group- and single-subject level. TEPs and MEPs appearance during rTMS was consistent with past findings of single pulse experiments. Heterogeneous temporal progressions, fluctuations or saturation effects of brain activity were observed during rTMS depending on the TEP component. Overall, global brain activity increased over the course of stimulation. Single-subject analysis revealed inter-individual temporal courses of global brain activity. The present findings are in favor of dose-response considerations and attempts in personalization of rTMS protocols.


Motor Cortex , Transcranial Magnetic Stimulation , Humans , Electromyography/methods , Transcranial Magnetic Stimulation/methods , Motor Cortex/physiology , Electroencephalography , Muscle, Skeletal/physiology
17.
Commun Biol ; 7(1): 506, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678058

Limb movement direction can be inferred from local field potentials in motor cortex during movement execution. Yet, it remains unclear to what extent intended hand movements can be predicted from brain activity recorded during movement planning. Here, we set out to probe the directional-tuning of oscillatory features during motor planning and execution, using a machine learning framework on multi-site local field potentials (LFPs) in humans. We recorded intracranial EEG data from implanted epilepsy patients as they performed a four-direction delayed center-out motor task. Fronto-parietal LFP low-frequency power predicted hand-movement direction during planning while execution was largely mediated by higher frequency power and low-frequency phase in motor areas. By contrast, Phase-Amplitude Coupling showed uniform modulations across directions. Finally, multivariate classification led to an increase in overall decoding accuracy (>80%). The novel insights revealed here extend our understanding of the role of neural oscillations in encoding motor plans.


Motor Cortex , Movement , Humans , Movement/physiology , Male , Adult , Motor Cortex/physiology , Female , Electroencephalography , Brain/physiology , Young Adult , Machine Learning , Electrocorticography , Epilepsy/physiopathology , Hand/physiology , Brain Mapping/methods
18.
Brain Stimul ; 17(2): 476-484, 2024.
Article En | MEDLINE | ID: mdl-38621645

BACKGROUND: Non-invasive brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct current stimulation hold promise for inducing brain plasticity. However, their limited precision may hamper certain applications. In contrast, Transcranial Ultrasound Stimulation (TUS), known for its precision and deep brain targeting capabilities, requires further investigation to establish its efficacy in producing enduring effects for treating neurological and psychiatric disorders. OBJECTIVE: To investigate the enduring effects of different pulse repetition frequencies (PRF) of TUS on motor corticospinal excitability. METHODS: T1-, T2-weighted, and zero echo time magnetic resonance imaging scans were acquired from 21 neurologically healthy participants for neuronavigation, skull reconstruction, and the performance of transcranial ultrasound and thermal modelling. The effects of three different TUS PRFs (10, 100, and 1000 Hz) with a constant duty cycle of 10 % on corticospinal excitability in the primary motor cortex were assessed using TMS-induced motor evoked potentials (MEPs). Each PRF and sham condition was evaluated on separate days, with measurements taken 5-, 30-, and 60-min post-TUS. RESULTS: A significant decrease in MEP amplitude was observed with a PRF of 10 Hz (p = 0.007), which persisted for at least 30 min, and with a PRF of 100 Hz (p = 0.001), lasting over 60 min. However, no significant changes were found for the PRF of 1000 Hz and the sham conditions. CONCLUSION: This study highlights the significance of PRF selection in TUS and underscores its potential as a non-invasive approach to reduce corticospinal excitability, offering valuable insights for future clinical applications.


Evoked Potentials, Motor , Motor Cortex , Humans , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Male , Evoked Potentials, Motor/physiology , Double-Blind Method , Female , Adult , Transcranial Magnetic Stimulation/methods , Young Adult , Magnetic Resonance Imaging , Pyramidal Tracts/physiology , Pyramidal Tracts/diagnostic imaging , Neural Inhibition/physiology
19.
Hum Brain Mapp ; 45(6): e26679, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38647038

Temporal dynamics of local cortical rhythms during acute pain remain largely unknown. The current study used a novel approach based on transcranial magnetic stimulation combined with electroencephalogram (TMS-EEG) to investigate evoked-oscillatory cortical activity during acute pain. Motor (M1) and dorsolateral prefrontal cortex (DLPFC) were probed by TMS, respectively, to record oscillatory power (event-related spectral perturbation and relative spectral power) and phase synchronization (inter-trial coherence) by 63 EEG channels during experimentally induced acute heat pain in 24 healthy participants. TMS-EEG was recorded before, during, and after noxious heat (acute pain condition) and non-noxious warm (Control condition), delivered in a randomized sequence. The main frequency bands (α, ß1, and ß2) of TMS-evoked potentials after M1 and DLPFC stimulation were recorded close to the TMS coil and remotely. Cold and heat pain thresholds were measured before TMS-EEG. Over M1, acute pain decreased α-band oscillatory power locally and α-band phase synchronization remotely in parietal-occipital clusters compared with non-noxious warm (all p < .05). The remote (parietal-occipital) decrease in α-band phase synchronization during acute pain correlated with the cold (p = .001) and heat pain thresholds (p = .023) and to local (M1) α-band oscillatory power decrease (p = .024). Over DLPFC, acute pain only decreased ß1-band power locally compared with non-noxious warm (p = .015). Thus, evoked-oscillatory cortical activity to M1 stimulation is reduced by acute pain in central and parietal-occipital regions and correlated with pain sensitivity, in contrast to DLPFC, which had only local effects. This finding expands the significance of α and ß band oscillations and may have relevance for pain therapies.


Acute Pain , Electroencephalography , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Male , Female , Acute Pain/physiopathology , Acute Pain/therapy , Adult , Young Adult , Electroencephalography/methods , Pain Threshold/physiology , Hot Temperature , Motor Cortex/physiopathology , Motor Cortex/physiology , Dorsolateral Prefrontal Cortex/physiology , Dorsolateral Prefrontal Cortex/physiopathology
20.
Sci Adv ; 10(17): eadj9303, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38669340

Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. We offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality-a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescales agrees with established theory of critical dynamics. Our results suggest that the cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.


Motor Cortex , Wakefulness , Animals , Wakefulness/physiology , Mice , Motor Cortex/physiology , Models, Neurological , Brain/physiology , Neurons/physiology , Computer Simulation
...